Affiliation:
1. RCC Institute of Information Technology, India
2. Saroj Mohan Institute of Technology, India
3. Techno India, India
4. Jadavpur University, India
Abstract
This chapter reports a hybrid optimization technique, a combination of stochastic methods – particle swarm optimization (PSO) and ant colony optimization (ACO), which is applied to find economic dispatch schedule and minimum generation cost for convex and non-convex power generation system simulated in MATLAB. A 40-generator system is considered here with combinations of valve point loading, ramp rate limit, and prohibited operating zone. The output is also noted when transmission loss is taken into consideration. The results are found better than those of many other hybrid methods. Considering the quality of the solution obtained and nature of convergence, PSO-ACO may be accepted as a good alternative for solving ELD problems of varying complexity. Though PSO has been extensively used in ELD problems for its flexibility, robustness, and fast convergence, it often produces suboptimal solution due to its premature convergence. ACO, on the other hand, known for its good global exploration feature, imparts better balance between local and global search when combined with PSO.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献