Novel Adaptive Histogram Binning-Based Lesion Segmentation for Discerning Severity in COVID-19 Chest CT Scan Images

Author:

Nivetha S.1,Inbarani H. Hannah1

Affiliation:

1. Department of Computer Science, Periyar University, Salem, India

Abstract

Coronavirus sickness (COVID-19) recently adversely disrupted the medical care system and the entire economy. Doctors, researchers, and specialists are working on new-fangled methods to detect COVID-19 relatively efficiently, such as constructing computerized COVID-19 detection systems. Medical imaging, such as Computed Tomography (CT), has a lot of opportunity as a solution to RT-PCR approaches for quantitative assessment and disease monitoring. COVID-19 diagnosis based on CT images can provide speedy and accurate results. A quantitative criterion for diagnosis is provided by an automated segmentation method of infection areas in the lungs. As an outcome, automatic image segmentation is in high demand as a clinical decision aid tool. To detect COVID-19, Computed Tomography images might be employed instead of the time-consuming RT-PCR assay. In this research, a unique technique is provided for segmenting infection areas in the lungs using CT scan images from COVID-19 patients. “Ground Glass Opacity (GGO)” regions were detected using Novel Adaptive Histogram Binning Based Lesion Segmentation (NAHBLS) method. Many metrics were also employed to evaluate the proposed method, including “Sorensen–Dice similarity”, “Sensitivity”, “Specificity”, “Precision”, and “Accuracy” measures. Experiments have shown that the proposed method can effectively separate the lung infections with good accuracy. The results show that the proposed Novel Adaptive Histogram Binning Based Lesion Segmentation based on automatic approach is effective at segmenting the lesion region of the image and calculated the Infection Rate (IR) over the lung region in Computed Tomography scan.

Publisher

IGI Global

Subject

Information Systems and Management,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Hybrid Genetic Arithmetic Optimization for Feature Selection and Classification of Pulmonary Disease Images;International Journal of Sociotechnology and Knowledge Development;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3