A Sentiment Analysis Model Based on Attention Map Convolutional Network

Author:

Chang Wanjun1,Ma Shaohui1

Affiliation:

1. Colloge of Computer Science and Technology, Henan Institute of Technology, China

Abstract

Sina Weibo has evolved into a daily social tool for people, yet effectively leveraging its data for sentiment analysis remains a challenging task due to the presence of information beyond text, such as emojis or images. In this paper, we propose an attention graph convolutional network (AGCN) for fine-grained sentiment classification of Weibo posts. Utilizing an attention network based on cosine similarity, the rich emotional information embedded in emoji features interacts with the textual content, effectively enhancing the capability to represent emotions in the text. Leveraging the characteristics of attention networks to construct a graph structure effectively enables graph convolutional networks to capture higher-order relationships between words in textual features. This approach addresses the challenge of extracting sentiment tendencies from Weibo comments. Experimental results on public data sets demonstrate the effectiveness of AGCNs.

Publisher

IGI Global

Reference25 articles.

1. Deep Learning using Rectified Linear Units (ReLU).;A. F.Agarap,2018

2. Sentiment Analysis About Investors and Consumers in Energy Market Based on BERT-BiLSTM

3. ‘Long autonomy or long delay?’ The importance of domain in opinion mining

4. A simple convergence proof of Adam and Adagrad. Transactions on Machine Learning Research.;A.D’efossez,2020

5. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.;J.Devlin;Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3