A Technique for Securing Big Data Using K-Anonymization With a Hybrid Optimization Algorithm

Author:

Madan Suman1,Goswami Puneet2

Affiliation:

1. JIMS, Delhi, India

2. SRM University, Haryana, India

Abstract

The recent techniques built on cloud computing for data processing is scalable and secure, which increasingly attracts the infrastructure to support big data applications. This paper proposes an effective anonymization based privacy preservation model using k-anonymization criteria and Grey wolf-Cat Swarm Optimization (GWCSO) for attaining privacy preservation in big data. The anonymization technique is processed by adapting k- anonymization criteria for duplicating k records from the original database. The proposed GWCSO is developed by integrating Grey Wolf Optimizer (GWO) and Cat Swarm Optimization (CSO) for constructing the k-anonymized database, which reveals only the essential details to the end users by hiding the confidential information. The experimental results of the proposed technique are compared with various existing techniques based on the performance metrics, such as Classification accuracy (CA) and Information loss (IL). The experimental results show that the proposed technique attains an improved CA value of 0.005 and IL value of 0.798, respectively.

Publisher

IGI Global

Subject

Information Systems and Management,Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Information Systems,Management Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber-Security: Critical Analysis on Attacks, Classification, and Issues;Lecture Notes in Networks and Systems;2024

2. Energy Cost and Machine Learning Accuracy Impact of k-Anonymisation and Synthetic Data Techniques;2023 International Conference on ICT for Sustainability (ICT4S);2023-06-05

3. An Extensive Study and Review of Privacy Preservation Models for the Multi-Institutional Data;Journal of Information Security;2023

4. HCS: A Hybrid Data Security Enhancing Model Based on Cryptography Algorithms;Advances in Information Communication Technology and Computing;2023

5. Energy cost and accuracy impact of k-anonymity;2022 International Conference on ICT for Sustainability (ICT4S);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3