Short-Term Photovoltaic System Output Power Prediction Based on Integrated Deep Learning Algorithms in the Clean Energy Sector

Author:

Wang Rui1,Liu Xin1,Chang Yingxian1,Liu Donglan1,Yao Honglei1

Affiliation:

1. State Grid Shandong Electric Power Research Institute, China

Abstract

Photovoltaic power generation system plays an important role in renewable energy. Therefore, accurately predicting the short-term output power of photovoltaic system has become a key challenge for real-time power grid management. This study focuses on Yingli's green energy photovoltaic system, and uses the convolution neural network and long-term and short-term memory network fusion model (CNN-LSTM) to predict the short-term power. The model integrates CNN's data feature extraction and LSTM's time series prediction ability, showing high accuracy and stability. The experimental results show that CNN-LSTM model has a low mean and variance of prediction error, and the prediction is stable and reliable, and it is consistent in different scenarios. This provides theoretical support for the output power prediction of photovoltaic system based on deep learning.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3