Gaits Classification of Normal vs. Patients by Wireless Gait Sensor and Support Vector Machine (SVM) Classifier

Author:

Nakano Taro1,Nukala B.T.2,Tsay J.2,Zupancic Steven3,Rodriguez Amanda3,Lie D.Y.C.4,Lopez J.2,Nguyen Tam Q.4

Affiliation:

1. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA & Department of Electrical & Electronic Engineering, Tokushima University, Tokushima, Japan

2. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA

3. Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA

4. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA & Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA

Abstract

Due to the serious concerns of fall risks for patients with balance disorders, it is desirable to be able to objectively identify these patients in real-time dynamic gait testing using inexpensive wearable sensors. In this work, the authors took a total of 49 gait tests from 7 human subjects (3 normal subjects and 4 patients), where each person performed 7 Dynamic Gait Index (DGI) tests by wearing a wireless gait sensor on the T4 thoracic vertebra. The raw gait data is wirelessly transmitted to a near-by PC for real-time gait data collection. To objectively identify the patients from the gait data, the authors used 4 different types of Support Vector Machine (SVM) classifiers based on the 6 features extracted from the raw gait data: Linear SVM, Quadratic SVM, Cubic SVM, and Gaussian SVM. The Linear SVM, Quadratic SVM and Cubic SVM all achieved impressive 98% classification accuracy, with 95.2% sensitivity and 100% specificity in this work. However, the Gaussian SVM classifier only achieved 87.8% accuracy, 71.7% sensitivity, and 100% specificity. The results obtained with this small number of human subjects indicates that in the near future, the authors should be able to objectively identify balance-disorder patients from normal subjects during real-time dynamic gaits testing using intelligent SVM classifiers.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3