A TBGAV-Based Image-Text Multimodal Sentiment Analysis Method for Tourism Reviews

Author:

Zhang Ke1,Wang Shunmin2,Yu Yuanyu3

Affiliation:

1. College of Economics and Management, Neijiang Normal University, Neijiang, Sichuan, 641100, China & Faculty of Business, Economics and Accountancy, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia

2. College of Economics and Management, Neijiang Normal University, Neijiang, Sichuan, 641100, China

3. College of Artificial Intelligence, Neijiang Normal University, Neijiang, Sichuan, 641100, China

Abstract

To overcome limitations in existing methods for sentiment analysis of tourism reviews, the authors propose an image-text multimodal sentiment analysis method (TBGAV). It consists of three modules: image sentiment extraction, text sentiment extraction, and image-text fusion. The image sentiment extraction module employs a pre-trained VGG19 model to capture sentiment features. The text sentiment extraction module utilizes the tiny bidirectional encoder representations from transformers (TinyBERT) model, incorporating the bidirectional recurrent neural network and attention (BiGRU-Attention) module for deeper sentiment semantics. The image-text fusion module employs the dual linear fusion approach to correlate image-text links and the maximum decision-making approach for high-precision sentiment prediction. TBGAV achieves superior performance on the Yelp dataset with accuracy, recall rates, and F1 scores of 77.51%, 78.01%, and 78.34%, respectively, outperforming existing methods. Accordingly, TBGAV is expected to help improve travel-related recommender systems and marketing strategies.

Publisher

IGI Global

Subject

General Computer Science

Reference46 articles.

1. Rating-based recommender system based on textual reviews using IoT smart devices.;M.Ahmed;Mobile Information Systems,2022

2. Color-based visual sentiment for social communication Taiwan.;M.Amencherla;Information Theory,2017

3. Advanced weighted hybridized approach for recommendation system

4. MUTAN: Multimodal Tucker Fusion for Visual Question Answering

5. A comprehensive survey on sentiment analysis: Approaches, challenges and trends

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3