A Flexible Analysis Tool for the Quantitative Acoustic Assessment of Infant Cry

Author:

Reggiannini Brian1,Sheinkopf Stephen J.2,Silverman Harvey F.1,Li Xiaoxue1,Lester Barry M.2

Affiliation:

1. Brown University, Providence, Rhode Island

2. Women and Infants Hospital of Rhode Island, Providence

Abstract

Purpose In this article, the authors describe and validate the performance of a modern acoustic analyzer specifically designed for infant cry analysis. Method Utilizing known algorithms, the authors developed a method to extract acoustic parameters describing infant cries from standard digital audio files. They used a frame rate of 25 ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, computing frame-level data and then organizing and summarizing this information within cry utterances. Using signal detection methods, the authors evaluated the accuracy of the automated system to determine voicing and to detect fundamental frequency (F 0 ) as compared to voiced segments and pitch periods manually coded from spectrogram displays. Results The system detected F 0 with 88% to 95% accuracy, depending on tolerances set at 10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at detecting voicing characteristics in the cry samples. Conclusions This article describes an automated infant cry analyzer with high accuracy to detect important acoustic features of cry. A unique and important aspect of this work is the rigorous testing of the system's accuracy as compared to ground-truth manual coding. The resulting system has implications for basic and applied research on infant cry development.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Reference39 articles.

1. Epoch extraction of voiced speech;Ananthapadmanabha T. V.;IEEE Transactions on Acoustics, Speech, and Signal Processing,1975

2. (In Russian.) How to design an adaptive pitch determination algorithm;Baronin S. P.;Proceedings of the 7th All-Union Acoustical Conference,1971

3. The newborn pain cry: Descriptive acoustic spectrographic analysis;Branco A.;International Journal of Pediatric Otorhinolaryngology,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3