Short-Term Reliability of Different Methods of Contralateral Suppression of Transient Evoked Otoacoustic Emission in Children and Adults

Author:

Swamy Shreyank P.1,Yathiraj Asha1

Affiliation:

1. Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysuru, Karnataka, India

Abstract

Purpose This study aimed to investigate the reliability of 3 methods to measure contralateral suppression of transient evoked otoacoustic emissions (TEOAEs) in children and adults. Method Contralateral suppression of TEOAEs was measured in 14 adults and 14 children using 3 methods with and without contralateral acoustic stimulus (CAS). Method-I having “2 s on-off” and Method-II having “10 s on-off” interleaved presentation of white noise. Method-III used “continuous presentation of white noise”. Test–retest reliability was checked in adults without removing the probe (same-probe recording) and reinserting the probe (different-probe recording) and in children using a different-probe recording. Results The absolute suppression amplitude of TEOAEs was higher for “continuous noise,” followed by “10 s on-off” and “2 s on-off” CAS. There was no significant effect of age across the 2 probe recordings, 3 methods of TEOAEs with and without CAS, and for the absolute suppression amplitude. Also, in adults, there was no significant difference between same-probe and different-probe recordings across the 3 methods. High internal consistency was observed on Cronbach's alpha (α > .9) for the 3 methods and 2 probe recordings. High agreement and correlation between the recordings for all 3 methods were seen using Bland–Altman plots and Pearson product–moment correlation coefficient. Conclusion The study demonstrated that highly reliable contralateral suppression of TEOAE can be measured using the 3 methods in adults and children. However, continuous presentation of CAS resulted in greater TEOAE suppression amplitude compared to interleaved presentation of CAS; hence, the former is recommended.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3