A Meta-Analysis of Performance Response Under Thermal Stressors

Author:

Hancock P.A.1,Ross Jennifer M.2,Szalma James L.2

Affiliation:

1. University of Central Florida, Orlando, Florida,

2. University of Central Florida, Orlando, Florida

Abstract

Objective: Quantify the effect of thermal stressors on human performance. Background: Most reviews of the effect of environmental stressors on human performance are qualitative. A quantitative review provides a stronger aid in advancing theory and practice. Method: Meta-analytic methods were applied to the available literature on thermal stressors and performance. A total of 291 references were collected. Forty-nine publications met the selection criteria, providing 528 effect sizes for analysis. Results: Analyses confirmed a substantial negative effect on performance associated with thermal stressors. The overall effect size for heat was comparable to that for cold. Cognitive performance was least affected by thermal stressors, whereas both psychomotor and perceptual task performance were degraded to a greater degree. Other variables were identified that moderated thermal effects. Conclusion: Results confirmed the importance of task type, exposure duration, and stressor intensity as key variables impacting how thermal conditions affect performance. Results were consistent with the theory that stress forces the individual to allocate attentional resources to appraise and cope with the threat, which reduces the capacity to process task-relevant information. This represents a maladaptive extension of the narrowing strategy, which acts to maintain stable levels of response when stress is first encountered. Application: These quantitative estimates can be used to design thermal tolerance limits for different task types. Although results indicate the necessity for further research on a variety of potentially influential factors such as acclimatization, the current summary provides effect size estimates that should be useful in respect to protecting individuals exposed to adverse thermal conditions.

Publisher

SAGE Publications

Subject

Behavioral Neuroscience,Applied Psychology,Human Factors and Ergonomics

Reference131 articles.

1. Ambient Temperature Effects on Paired Associate Learning∗

2. Aschoff, J. (1984). Circadian timing. In J. Gibbon & L. Allan (Eds.), Timing and time perception (pp. 442-468). New York: New York Academy of Sciences.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3