Efficient quantum amplitude encoding of polynomial functions
Author:
Gonzalez-Conde Javier12, Watts Thomas W.3, Rodriguez-Grasa Pablo124, Sanz Mikel1256
Affiliation:
1. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain 2. EHU Quantum Center, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain 3. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 4. TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain 5. IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain 6. Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14, 48009 Bilbao, Spain
Abstract
Loading functions into quantum computers represents an essential step in several quantum algorithms, such as quantum partial differential equation solvers. Therefore, the inefficiency of this process leads to a major bottleneck for the application of these algorithms. Here, we present and compare two efficient methods for the amplitude encoding of real polynomial functions on n qubits. This case holds special relevance, as any continuous function on a closed interval can be uniformly approximated with arbitrary precision by a polynomial function. The first approach relies on the matrix product state representation (MPS). We study and benchmark the approximations of the target state when the bond dimension is assumed to be small. The second algorithm combines two subroutines. Initially we encode the linear function into the quantum registers either via its MPS or with a shallow sequence of multi-controlled gates that loads the linear function's Hadamard-Walsh series, and we explore how truncating the Hadamard-Walsh series of the linear function affects the final fidelity. Applying the inverse discrete Hadamard-Walsh transform converts the state encoding the series coefficients into an amplitude encoding of the linear function. Thus, we use this construction as a building block to achieve an exact block encoding of the amplitudes corresponding to the linear function on k0 qubits and apply the quantum singular value transformation that implements a polynomial transformation to the block encoding of the amplitudes. This unitary together with the Amplitude Amplification algorithm will enable us to prepare the quantum state that encodes the polynomial function on k0 qubits. Finally we pad n−k0 qubits to generate an approximated encoding of the polynomial on n qubits, analyzing the error depending on k0. In this regard, our methodology proposes a method to improve the state-of-the-art complexity by introducing controllable errors.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Reference105 articles.
1. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. ``Quantum supremacy using a programmable superconducting processor''. Nature 574, 505–510 (2019). 2. Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. ``Strong quantum computational advantage using a superconducting quantum processor''. Physical Review Letters 127 (2021). 3. Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. ``Quantum computational advantage using photons''. Science 370, 1460–1463 (2020). 4. Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter, J. Pablo Bonilla Ataides, Nishad Maskara, Iris Cong, Xun Gao, Pedro Sales Rodriguez, Thomas Karolyshyn, Giulia Semeghini, Michael J. Gullans, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. ``Logical quantum processor based on reconfigurable atom arrays''. Nature (2023). 5. Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. ``Quantum algorithm for linear systems of equations''. Phys. Rev. Lett. 103, 150502 (2009).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|