Encoding strongly-correlated many-boson wavefunctions on a photonic quantum computer: application to the attractive Bose-Hubbard model

Author:

Yalouz Saad123,Senjean Bruno34,Miatto Filippo5,Dunjko Vedran6

Affiliation:

1. Laboratoire de Chimie Quantique, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France

2. Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands

3. Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

4. ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

5. Xanadu, Toronto, ON, M5G 2C8, Canada

6. Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Abstract

Variational quantum algorithms (VQA) are considered as some of the most promising methods to determine the properties of complex strongly correlated quantum many-body systems, especially from the perspective of devices available in the near term. In this context, the development of efficient quantum circuit ansatze to encode a many-body wavefunction is one of the keys for the success of a VQA. Great efforts have been invested to study the potential of current quantum devices to encode the eigenstates of fermionic systems, but little is known about the encoding of bosonic systems. In this work, we investigate the encoding of the ground state of the (simple but rich) attractive Bose-Hubbard model using a Continuous-Variable (CV) photonic-based quantum circuit. We introduce two different ansatz architectures and demonstrate that the proposed continuous variable quantum circuits can efficiently encode (with a fidelity higher than 99%) the strongly correlated many-boson wavefunction with just a few layers, in all many-body regimes and for different number of bosons and initial states. Beyond the study of the suitability of the ansatz to approximate the ground states of many-boson systems, we also perform initial evaluations of the use of the ansatz in a variational quantum eigensolver algorithm to find it through energy minimization. To this end we also introduce a scheme to measure the Hamiltonian energy in an experimental system, and study the effect of sampling noise.

Funder

Dutch Research Council (NWO/OCW), as part of the Quantum Software Consortium program

Interdisciplinary Thematic Institute ITICSC via the IdEx Unistra

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference147 articles.

1. Peruzzo, Alberto ; McClean, Jarrod ; Shadbolt, Peter ; Yung, Man-Hong ; Zhou, Xiao-Qi ; Love, Peter J. ; Aspuru-Guzik, Alán ; O'brien, Jeremy L.: A variational eigenvalue solver on a photonic quantum processor. In: Nature Comm. 5 (2014), 4213. https://doi.org/10.1038/ncomms5213.

2. O'Malley, Peter J. ; Babbush, Ryan ; Kivlichan, Ian D. ; Romero, Jonathan ; McClean, Jarrod R. ; Barends, Rami ; Kelly, Julian ; Roushan, Pedram ; Tranter, Andrew ; Ding, Nan u. a.: Scalable quantum simulation of molecular energies. In: Phys. Rev. X 6 (2016), Nr. 3, 031007. https://doi.org/10.1103/PhysRevX.6.031007.

3. Shen, Yangchao ; Zhang, Xiang ; Zhang, Shuaining ; Zhang, Jing-Ning ; Yung, Man-Hong ; Kim, Kihwan: Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. In: Phys. Rev. A 95 (2017), Nr. 2, 020501. https://doi.org/10.1103/PhysRevA.95.020501.

4. Kandala, Abhinav ; Mezzacapo, Antonio ; Temme, Kristan ; Takita, Maika ; Brink, Markus ; Chow, Jerry M. ; Gambetta, Jay M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. In: Nature 549 (2017), Nr. 7671, 242–246. https://doi.org/10.1038/nature23879.

5. Hempel, Cornelius ; Maier, Christine ; Romero, Jonathan ; McClean, Jarrod ; Monz, Thomas ; Shen, Heng ; Jurcevic, Petar ; Lanyon, Ben P. ; Love, Peter ; Babbush, Ryan ; Aspuru-Guzik, Alán ; Blatt, Rainer ; Roos, Christian F.: Quantum chemistry calculations on a trapped-ion quantum simulator. In: Phys. Rev. X 8 (2018), Nr. 3, 031022. https://doi.org/10.1103/PhysRevX.8.031022.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3