A no-go theorem on the nature of the gravitational field beyond quantum theory

Author:

Galley Thomas D.1,Giacomini Flaminia1,Selby John H.2

Affiliation:

1. Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada

2. ICTQT, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

Abstract

Recently, table-top experiments involving massive quantum systems have been proposed to test the interface of quantum theory and gravity. In particular, the crucial point of the debate is whether it is possible to conclude anything on the quantum nature of the gravitational field, provided that two quantum systems become entangled solely due to the gravitational interaction. Typically, this question has been addressed by assuming a specific physical theory to describe the gravitational interaction, but no systematic approach to characterise the set of possible gravitational theories which are compatible with the observation of entanglement has been proposed. Here, we remedy this by introducing the framework of Generalised Probabilistic Theories (GPTs) to the study of the nature of the gravitational field. This framework enables us to systematically study all theories compatible with the detection of entanglement generated via the gravitational interaction between two systems. We prove a no-go theorem stating that the following statements are incompatible: i) gravity is able to generate entanglement; ii) gravity mediates the interaction between the systems; iii) gravity is classical. We analyse the violation of each condition, in particular with respect to alternative non-linear models such as the Schrödinger-Newton equation and Collapse Models.

Funder

Foundation for Polish Science (IRAP project, ICTQT,co-financed by EU within Smart Growth Operational Programme).

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3