Quantum message-passing algorithm for optimal and efficient decoding

Author:

Piveteau Christophe1,Renes Joseph M.1

Affiliation:

1. Institute for Theoretical Physics, ETH Zürich, Switzerland

Abstract

Recently, Renes proposed a quantum algorithm called belief propagation with quantum messages (BPQM) for decoding classical data encoded using a binary linear code with tree Tanner graph that is transmitted over a pure-state CQ channel \cite{renes_2017}, i.e., a channel with classical input and pure-state quantum output. The algorithm presents a genuine quantum counterpart to decoding based on the classical belief propagation algorithm, which has found wide success in classical coding theory when used in conjunction with LDPC or Turbo codes. More recently Rengaswamy etal. \cite{rengaswamy_2020} observed that BPQM implements the optimal decoder on a small example code, in that it implements the optimal measurement that distinguishes the quantum output states for the set of input codewords with highest achievable probability. Here we significantly expand the understanding, formalism, and applicability of the BPQM algorithm with the following contributions. First, we prove analytically that BPQM realizes optimal decoding for any binary linear code with tree Tanner graph. We also provide the first formal description of the BPQM algorithm in full detail and without any ambiguity. In so doing, we identify a key flaw overlooked in the original algorithm and subsequent works which implies quantum circuit realizations will be exponentially large in the code dimension. Although BPQM passes quantum messages, other information required by the algorithm is processed globally. We remedy this problem by formulating a truly message-passing algorithm which approximates BPQM and has quantum circuit complexity O(poly n,polylog 1ϵ), where n is the code length and ϵ is the approximation error. Finally, we also propose a novel method for extending BPQM to factor graphs containing cycles by making use of approximate cloning. We show some promising numerical results that indicate that BPQM on factor graphs with cycles can significantly outperform the best possible classical decoder.

Funder

Swiss National Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Belief-Propagation with Quantum Messages for Polar Codes on Classical-Quantum Channels;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

2. Theory Behind Quantum Error Correcting Codes: An Overview;Journal of the Indian Institute of Science;2023-04

3. Belief Propagation for Classical and Quantum Systems: Overview and Recent Results;IEEE BITS the Information Theory Magazine;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3