Data-driven density prediction of AlSi10Mg parts produced by laser powder bed fusion using machine learning and finite element simulation

Author:

Bossen Bastian1ORCID,Kuehne Maxim1ORCID,Kristanovski Oleg2ORCID,Emmelmann Claus1ORCID

Affiliation:

1. Institute of Laser and Systems Technology, Hamburg University of Technology 1 , Harburger Schloßstraße 28, Hamburg 21079, Germany

2. Fehrmann Materials X GmbH 2 , Stenzelring 19, Hamburg 21107, Germany

Abstract

Powder bed fusion of metals using laser beam (PBF-LB/M) is a commonly used additive manufacturing process for the production of high-performance metal parts. AlSi10Mg is a widely used material in PBF-LB/M due to its excellent mechanical and thermal properties. However, the part quality of AlSi10Mg parts produced using PBF-LB/M can vary significantly depending on the process parameters. This study investigates the use of machine learning (ML) algorithms for the prediction of the resulting part density of AlSi10Mg parts produced using PBF-LB/M. An empirical data set of PBF-LB/M process parameters and resulting part densities is used to train ML models. Furthermore, a methodology is developed to allow density predictions based on simulated meltpool dimensions for different process parameters. This approach uses finite element simulations to calculate the meltpool dimensions, which are then used as input parameters for the ML models. The accuracy of this methodology is evaluated by comparing the predicted densities with experimental measurements. The results show that ML models can accurately predict the part density of AlSi10Mg parts produced using PBF-LB/M. Moreover, the methodology based on simulated meltpool dimensions can provide accurate predictions while significantly reducing the experimental effort needed in process development in PBF-LB/M. This study provides insights into the development of data-driven approaches for the optimization of PBF-LB/M process parameters and the prediction of part properties.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3