In situ observation with x-ray for tentative exploration of laser beam welding processes for aluminum-based alloys

Author:

Börner Stephan1,Dittrich Dirk1,Mohlau Philipp1,Leyens Christoph12ORCID,García-Moreno Francisco34ORCID,Kamm Paul Hans34ORCID,Neu Tillmann Robert34ORCID,Schlepütz Christian Matthias5ORCID

Affiliation:

1. Fraunhofer IWS Dresden 1 , Winterbergstrasse 28, 01277 Dresden, Germany

2. Technische Universität Dresden 2 , 01062 Dresden, Germany

3. Helmholtz-Zentrum Berlin für Materialien und Energie 3 , Hahn-Meitner-Platz 1, 14109 Berlin, Germany

4. Technische Universität Berlin 4 , Strasse des 17. Juni 135, 10623 Berlin, Germany

5. Paul Scherrer Institute 5 , 5232 Villigen, Switzerland

Abstract

In recent years, laser processes have taken an ever-increasing market share in the manufacture of components. The development of new, improved beam sources with corresponding systems technology and the decreasing investment costs of the beam sources are important keys to this success. Particularly, high frequency beam oscillation has great potential in laser beam welding and cutting. The main obstacle for the widespread breakthrough of high frequency (HF) beam oscillation is the still insufficient understanding of the underlying physical mechanisms. Gaining a deeper insight is essential for process optimization. The in situ observation with x rays enables the visualization and analysis of these highly dynamic processes inside the workpiece. The goal of the performed experiment described in this paper was to in situ analyze the structural evolution of and defect generation in laser welding beads of different aluminum alloys. A fiber laser (max. 600 W, cw output power) including a beam scanner control system for rapid beam guidance was used. Of general interest was the comparison between static and oscillated beam guidance and the effects on the joining procedure. This paper shows the initial results of the analysis of the melt pool behavior and seam formation as well as the formation of seam irregularities during the laser process. In the simplest case, radiographs were taken, i.e., 2D projections of the x-ray absorption coefficient distribution within a material. Thereby, recordings from 10 000 up to 40 000 fps could be generated. Furthermore, tomoscopies—the continuous acquisition of tomographic (3D) images, up to 100 tomograms per second—could be generated with proven equipment, whose main components are a high-speed rotation stage and a camera system. The findings will help to get a better understanding of keyhole phenomena as well as effects of turbulent melt flow such as pore formation and guide to solutions for preventing them. Hence, initial results of high frequency beam oscillation processes including melt pool degassing and porosity reduction will be shown and discussed.

Publisher

Laser Institute of America

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3