MATERIALIZED VIEWS QUANTUM OPTIMIZED PICKING for INDEPENDENT DATA MARTS QUALITY

Author:

Adnan Refed,Abbas Talib M. J.

Abstract

Particular and timely unified information along with quick and effective query response times is the basic fundamental requirement for the success of any collection of independent data marts (data warehouse) which forms Fact Constellation Schema or Galaxy Schema. Because of the materialized view storage area, the materialization of all views is practically impossible thus suitable materialized views (MVs) picking is one of the intelligent decisions in designing a Fact Constellation Schema to get optimal efficiency. This study presents a framework for picking best-materialized view using Quantum Particle Swarm Optimization (QPSO) algorithm where it is one of the stochastic algorithm in order to achieve the effective combination of good query response time, low query handling cost and low view maintenance cost. The results reveals that the proposed method for picking best-materialized view using QPSO algorithm is better than other techniques via computing the ratio of query response time and compare it to the response time of the same queries on the materialized views. Ratio of implementing the query on the base table takes five times more time than the query implementation on the materialized views. Where the response time of queries through MVs access were found 0.084 seconds while by direct access queries were found 0.422 seconds. This outlines that the performance of query through materialized views access is 402.38% better than those directly access via data warehouse-logical.

Publisher

College of Information Engineering - Al-Nahrain University

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3