Minimizing satellite residence time in the GEO region through elevated eccentricity method

Author:

Öz İbrahim1ORCID

Affiliation:

1. Ankara Yıldırım Beyazıt Üniversitesi Teknoloji Transfer Ofisi

Abstract

This research focuses on a critical aspect of the space environment, addressing the escalating issue of space debris and congestion in the geostationary orbit. The geostationary orbit is facing many satellites, leading to hazardous congestion levels and jeopardizing the limited resources available. Although organizations have established regulations for retiring satellites to graveyard orbits, a complete removal is not always achievable for numerous reasons. In response to this challenge, our study proposes a practical and cost-effective solution to mitigate debris accumulation in the region. In addition to the above, our research focuses on protecting the geostationary space environment, especially in unforeseen events involving inclined-operated satellites. We explore the implementation of an elevated eccentricity method, increasing the eccentricity of aging satellites and assessing its impact on their time in the geostationary and geostationary-protected regions. Our analysis encompasses short-term, medium-term, and long-term periods, enabling us to evaluate the effectiveness of this approach over different time frames. The study reveals a significant reduction in the time satellites spend in these regions as their eccentricity increases. Moderate eccentricity levels can reduce satellite residence time in these regions from 100.00% to 3.81%. This compelling evidence demonstrates the feasibility and effectiveness of adopting elevated eccentricity as a viable strategy to mitigate space debris in the regions. This proposed approach offers satellite operators a reliable and cost-effective solution, ensuring safe operations and protecting critical regions for aging GEO satellites. Accordingly, we contribute to space environment protection, securing the sustainability of the geostationary orbit.

Publisher

Turkish Journal of Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3