Multilayer NMF for Blind Unmixing of Hyperspectral Imagery with Additional Constraints

Author:

Chen Lei,Chen Shengbo,Guo Xulin

Abstract

Due to the coincidence of hyperspectral reflectance nonnegativity (and its corresponding abundance) with nonnegative matrix factorization (<small>NMF</small>) methods, <small>NMF</small> has been widely applied to unmix hyperspectral images in recent years. However, many local minima persist because of the nonconvexity of the objective function. Thus, the nonnegativity constraint is not sufficient and additional auxiliary constraints should be applied to objective functions. In this paper, a new approach we call constrained multilayer <small>NMF</small> (<small>CMLNMF</small>), is proposed for hyperspectral data. In this approach, the mixed spectra are regarded as endmember signatures that has been contaminated by multiplicative noise. The purpose of <small>CMLNMF</small> is to eliminate noise by hierarchical processing until the endmember spectra are obtained. Also, the hierarchical processing is self-adaptive to make the algorithm more effective. Furthermore, in each layer two constraints are implemented on the objective function. One is sparseness on the abundance matrix and the other is minimum volume on the spectral matrix. The hierarchical processing separates the abundance matrix into a series of matrices that make the characteristic of sparseness more obvious and meaningful. The proposed algorithm is applied to synthetic data and real hyperspectral data for quantitative evaluation. According to the comparison with other algorithms, <small>CMLNMF</small> has better performance and provides effective solutions for blind unmixing of hyperspectral image data.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3