Infrastructure as a wicked complex process

Author:

Chester Mikhail V.1,Allenby Braden1

Affiliation:

1. Metis Center for Infrastructure and Sustainable Engineering, Civil, Environmental, and Sustainable Engineering, School of Sustainable Engineering and the Built Environment, Arizona State University, US

Abstract

Changing complexity in the increasingly integrated human, natural, and built systems within which our infrastructures are designed and operated make it necessary to examine how the role of engineering requires new competencies for satisficing. Several long-term trends appear to be shifting our infrastructures further away from the complicated domain where optimization and efficiency were the core approaches, to the domain of complexity, where rapidly changing environments and fragmentation of goals require fundamentally new approaches. While complexity in infrastructure has always existed in some form, making infrastructures agile and flexible for the Anthropocene will require us to acknowledge and work with the fact that infrastructure change now appears to be a wicked and complex process. Wicked complexity is the result of three competing forces that are inimical to rapid and sustained change of infrastructures in a future marked by acceleration and uncertainty: wicked problems, technical complexity including lock-in, and social complexity. The combination of these factors raises serious questions about whether rapidly changing demands, technologies, and perturbations (such as climate change, or cyber attacks) will affect our infrastructure’s capacity to provide services. What infrastructure managers need to do today is very different than in the past. Increased presence and polarization of viewpoints is becoming more common, where solutions are dictated not by technical performance measures but instead by “acceptable enough” to all parties. Adaptive management practices and associated competencies that have proven successful in managing complex socio-ecological systems may provide some guidance for how to manage infrastructure change. These competencies are i) promoting a shared understanding of what infrastructures can do, ii) managing infrastructures as systems with changing demands, iii) emphasizing experimentation over conventional approaches, and, iv) restructuring education and training for a complexity mindset that emphasizes what can be over what is, and relies on satisficing, not optimization.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Reference54 articles.

1. ‘Reconceptualizing Infrastructure in the Anthropocene’;Issues in Science and Technology,2018

2. Arbesman,S. 2016.Overcomplicated: Technology at the Limits of Comprehension.Penguin Publishing Group. Available at:https://books.google.com/books?id=HTXRCgAAQBAJ.

3. Adaptive co-management for social–ecological complexity

4. Berkes,F,Folke,C andColding,J. 1998.Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience.Cambridge University Press. Available at:https://books.google.com/books?id=Q9E_ngEACAAJ.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3