A model-based study of the dynamics of Arctic low-level jet events for the MOSAiC drift

Author:

Heinemann Günther1ORCID,Schefczyk Lukas2,Zentek Rolf1

Affiliation:

1. 1Environmental Meteorology, University of Trier, Trier, Germany

2. 2State Environment Agency Rhineland-Palatinate, Mainz, Germany

Abstract

Low-level jets (LLJs) are studied for the period of the ship-based experiment MOSAiC 2019/2020 using the regional climate model Consortium for Small-scale Model—Climate Limited area Mode (CCLM). The model domain covers the whole Arctic with 14 km resolution. CCLM is run in a forecast mode (nested in ERA5) and with different configurations of sea ice data for the winter. The focus is on the study of LLJs for the MOSAiC site. LLJs are detected using model output every 1 h. We define LLJ events as LLJs that last at least 6 h. Case studies of LLJ events are shown using wind lidar and radiosonde data as well as CCLM simulations. LLJs are not local events but are embedded in large jet structures extending for hundreds of kilometers that are advected toward the MOSAiC site. CCLM simulations are used to study the statistics of LLJs of all profiles and of LLJ events as well as the dynamics. LLJs are found in about 40% of the hourly profiles, but only 26% of the hourly profiles are associated with LLJ events. Strong LLJs (≥15 m/s) are detected in 13% of the hourly profiles, which is about the same fraction as for strong LLJ events. The mean duration of events is about 12 h. The LLJ events are characterized using dynamical criteria for the wind speed profile and the evolution of the jet core. A fraction of 35% of the LLJ events are baroclinic, but more than 40% of the LLJ events show a large contribution of advection to the initial generation as well as for the evolution of the jet core. Only very few events fulfill the criteria of inertial oscillations. LLJ events occur for all months, but strong events have a higher frequency during winter. The turbulent kinetic energy in the lower atmospheric boundary layer (ABL) is twice (4 times) as large for LLJs (strong LLJs) than for situations without LLJs, which underlines the impact of LLJs on turbulent processes in the ABL.

Publisher

University of California Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3