Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene

Author:

Aguirre Julio,Riding Robert,Braga Juan C.

Abstract

Data from a comprehensive literature survey for the first time provide stage-level resolution of Early Cretaceous through Pleistocene species diversity for nongeniculate coralline algae. Distributions of a total of 655 species in 23 genera were compiled from 222 publications. These represent three family-subfamily groupings each with distinctive present-day distributions: (1) Sporolithaceae, low latitude, mainly deep water; (2) Melobesioid corallinaceans, high latitude, shallow water, to low latitude, deep water; (3) Lithophylloid/mastophoroid corallinaceans, mid- to low latitude, shallow water.Raw data show overall Early Cretaceous-early Miocene increase to 245 species in the Aquitanian, followed by collapse to only 43 species in the late Pliocene. Rarefaction analysis confirms the pattern of increase but suggests that scarcity of publications exaggerates Neogene decline, which was actually relatively slight.Throughout the history of coralline species, species richness broadly correlates with published global paleotemperatures based on benthic foraminifer δ18O values. The warm-water Sporolithaceae were most species-abundant during the Cretaceous, but they declined and were rapidly overtaken by the Corallinaceae as Cenozoic temperatures declined.Trends within the Corallinaceae during the Cenozoic appear to reflect environmental change and disturbance. Cool- and deep-water melobesioids rapidly expanded during the latest Cretaceous and Paleocene. Warmer-water lithophylloid/mastophoroid species increased slowly during the same period but more quickly in the early Oligocene, possibly reflecting habitat partitioning as climatic belts differentiated and scleractinian reef development expanded near the Eocene/Oligocene boundary. Melobesioids abruptly declined in the late Pliocene-Pleistocene, while lithophylloid/mastophoroids increased again. Possibly, onset of glaciation in the Northern Hemisphere (~2.4 Ma) sustained or accentuated latitudinal differentiation and global climatic deterioration, disrupting high-latitude melobesioid habitats. Simultaneously, this could have caused moderate environmental disturbance in mid- to low-latitude ecosystems, promoting diversification of lithophylloids/mastophoroids through the “fission effect.”Extinction events that eliminated >20% of coralline species were most severe (58–67% of species) during the Late Cretaceous and late Miocene-Pliocene. Each extinction was followed by substantial episodes of origination, particularly in the Danian and Pleistocene.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3