Potassium bromate – inhalable fraction. Documentation of proposed values of occupational exposure limits (OELs)

Author:

Starek Andrzej1

Affiliation:

1. Collegium Medicum Uniwersytetu Jagiellońskiego

Abstract

Potassium bromate (V), (KBrO3) exists as white crystals, crystalline powder or granules. It is highly soluble in water, tasteless and odourless. Potassium bromate is a strong oxidizing agent. In the past it has been used as food additive in flour milling, as an ingredient in fish-paste in Japan, in cheese making, in beer malting, as a component of cold hair wave liquid and an oxidizing compound. Moreover, bromate is formed as a by-product of water disinfection by ozonation and is frequently detected in tap and bottled water. In fact bromate is one of the most prevalent disinfection by-product of surface water. Occupational exposure to potassium bromate occurs mainly in production plants during packaging processes. In Poland, about 1 160 persons were exposed to this compound in 2016. Bromate caused many acute poisonings by accidental ingestion, mainly among children, and more often ingested for tentative suicide by young women, especially hairdressers. In the acute phase of poisoning, gastrointestinal disturbances, irreversible hearing loss, and acute renal failure were observed. Acute renal failure was associated with hemolytic uremic syndrome. There are no data on chronic intoxication of humans by potassium bromate and epidemiological studies on this subject. On the basis of the value of median lethal dose (LD50) per os in rat, potassium bromate has been classified as a compound belonging to the category „Toxic”. Major toxic signs and symptoms in animals after a single intragastric administration of potassium bromate were tachypnea, hypothermia, diarrhea, lacrimation, suppression of locomotor movement, ataxic gait, and animals lying in a prone position. At autopsy the major findings were strong hyperemia of glandular stomach mucosa and congestion of lungs. Microscopically, necrosis and degenerative changes of the proximal tubular epithelium and hearing cells of internal ear were found. It was stated that the compound is not irritating, corrosive or sensitizing. In subchronic and chronic exposure of rodents, potassium bromate led to liver and kidney dysfunction and tubular epithelial damage. Potassium bromate had mutagenic and clastogenic effects. It induced point mutations, structural chromosome aberrations, micronuclei in polychromatic erythrocytes in male mice, DNA oxidative damage by modification of deoxyguanosine to 8-hydroxydeoxyguanosine, and DNA double-strand breakage. Potassium bromate induced neoplasms in rodents and exerted promotion effect in comparison with well-known carcinogens. Besides from preneoplastic changes, expressed by high incidences of renal cell tumors and dysplastic foci, bromate induced solid neoplasms, such as adenomas and adenocarcinomas in a rat kidney and thyroid, and mesotheliomas of peritoneum and tunica vaginalis testis. The European Union classified potassium bromate as a substance that can cause cancer (Group 1.B), whereas IARC classified it as a presumably carcinogenic agent for human (Group 2.B). In principle, effects of bromate on reproduction and ontogenetic development of offspring were not observed. Animal studies suggest that a kidney is a critical organ in the exposure to potassium bromate. The results of subchronic exposure of male rats to potassium bromate administered with drinking water were used to calculate the value of MAC-NDS. The critical effects in kidney were: an increase of organ weight and dose-dependent histopathological alterations defined as epithelium urinary tract hypertrophy. The NOAEL value is 1.5 mg/kg b.w./day. For the calculation of the maximum allowable concentration (MAC) value, 5 uncertainty factors with total value of 24 were used. Based on this estimation it is proposed to accept the MAC-TWA value for potassium bromate at 0.44 mg/m3. The risks of kidney and thyroid cancer in condition of occupational exposure are 2.2 · 10-3 and 0.6 · 10-3, respectively. There is no reason to determine the value of short-term exposure limit (STEL) and the biological exposure index (BEI). „Carc.1.B” notation (carcinogenic substance) was proposed

Publisher

Central Institute for Labour Protection - National Research Institute

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3