Effects of Granulocyte Colony-Stimulating Factor on Opsonin Receptor Expression and Neutrophil Antibacterial Activity in a Mouse Model of Severe Acute Pancreatitis

Author:

Hong-Fang Tuo1,Yan-Hui Peng1,Lei Bao1,Wan-Xing Zhang1

Affiliation:

1. Department of Hepatobiliary Surgery, Hebei General Hospital, No. 348 of Shijiazhuang Heping Xilu, Shijiazhuang, Hebei Province, China

Abstract

The antimicrobial function of neutrophils, which is dependent on opsonin receptors, deteriorates in severe acute pancreatitis (SAP). Granulocyte colony-stimulating factor (G-CSF) putatively enhanced levels of the opsonin receptors CD11b and CD32/16 in healthy human subjects, and provided protection against infection in animal models of SAP. A statistically convincing study of the effect of G-CSF on CD32/16 expression in an SAP model is lacking. We used a mouse model of SAP to investigate the association between G-CSF administration and CD32/16 levels on neutrophils and bacterial translocation. G-CSF or saline was subcutaneously injected into SAP-induced mice. The pancreases were histologically examined, and leukocytes were stained to count neutrophils. The expression of CD11b and CD32/16 on neutrophils was measured by flow cytometry, and bacterial translocation was observed by bacterial culture.The numbers of CD11b and CD32/16-positive neutrophils were significantly elevated in the SAP mice treated with G-CSF, and the mean fluorescence intensities of these receptors on neutrophils were significantly elevated. Bacterial translocations to cavity organs were suppressed from 17% to 6% by G-CSF treatment. Our results indicated that the number of neutrophils significantly increased with increasing expression of CD11b and CD32/16 and their mean fluorescence intensities (MFIs). This inhibited bacterial translocation to other organs. These results are in accord with other studies in SAP dogs and SAP mice. Our findings suggest that G-CSF was effective in protecting against bacterial infection in SAP mice.

Publisher

Walter de Gruyter GmbH

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3