Orthopedic and ophthalmology surgical service projection modelling in Manitoba: Research approach for a data linkage study

Author:

Katz Alan,Owczar Hannah,Taylor Carole,Bowes John-Micheal,Soodeen Ruth-Ann

Abstract

BackgroundThe healthcare system in Manitoba, Canada has faced long wait times for many surgical procedures and investigations, including orthopedic and ophthalmology surgeries. Wait times for surgical procedures is considered a significant barrier to accessing healthcare in Canada and can have negative health outcomes for patients. We developed models to forecast anticipated surgical procedure demands up to 2027. This paper explores the opportunities and challenges of using administrative data to describe forecasts of surgical service delivery. MethodsThis study used whole population linked administrative health data to predict future orthopedic and ophthalmology surgical procedure demands up to 2027. Procedure codes (CCI) from hospital discharge abstracts and medical claims data were used in the modelling. A Seasonal Autoregressive Integrated Moving Average model provided the best fit to the data from April 1, 2004 to March 31, 2020. ResultsInitial analyses of only hospital-based procedures excluded a significant portion of provider workload, namely those services provided in clinics. We identified 500,732 orthopedic procedures completed between April 1, 2004 and March 31, 2020 (349,171 procedures identified from hospital discharge abstracts and 151,561 procedures from medical claims). Procedure volumes for these services are expected to rise 17.7% from 2020 (36,542) to 2027 (43,011), including the forecasted 43.9% increase in clinic-based procedures. Of the 660,127 ophthalmology procedures completed between April 1, 2004 and March 31, 2020, 230,717 procedures were identified from hospital discharge abstracts and 429,410 from medical claims. Models forecasted a 27.7% increase from 2020 (69,598) to 2027 (88,893) with most procedures being performed in clinics. ConclusionResearchers should consider including multiple datasets to add information that may have been missing from the presumed data source in their research approach. Confirming the completeness of the data is critical in modelling accurate predictions. Forecast modelling techniques have evolved but still require validation.

Publisher

Swansea University

Subject

Information Systems and Management,Health Informatics,Information Systems,Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3