Abstract
Abstract
Glass vias are emerging as a favourable option for radiofrequency-based micro-electromechanical system packaging. For the micromachining of glass, electrochemical discharge machining (ECDM) could be the most suitable technique if issues pertaining to the process stability are addressed thoroughly. The electrolyte temperature has immense influence on the viscosity and conductivity of the electrolyte, which percolate the stability of the ECDM process. Therefore, this article investigates the effects of the electrolyte temperature and applied voltage on the performance characteristics of ECDM for the micromachining of borosilicate glass. The machining rate (MR) and hole overcut (HOC) of the machined microholes are considered as performance characteristics. A 3D thermal-based finite element model (FEM) was developed for the thermal analysis in the machining zone. In the thermal analysis, the heat flux by thermal discharge was assumed to have Gaussian distribution, and accordingly, temperature profiles in the thermal zone were analyzed by controlling the electrolyte temperature and voltage at various levels. Further processing of temperature profiles in the thermal zone was utilized in the estimation of MR and HOC. Electrostatic-based FEM was utilized to assess the intensity of the electric field in the proximity of the tool electrode to analyze the probable locations of thermal discharge and its impact on the geometrical characteristics of the machined microholes. The simulation outcomes were validated experimentally, and show good agreement. A field emission electron microscope with energy dispersive spectroscopy was used for the characterization of the machined surface to observe the effect of the electrolyte temperature.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献