A Kirchhoff Migration scheme for elastic obstacle identification

Author:

Rabinovich Daniel,Givoli DanORCID

Abstract

Abstract Kirchhoff Migration (KM), sometimes called Arrival (or Travel) Time Imaging, is a basic and popular imaging technique based on the arrival time of waves from given sources to given sensors. It is commonly used in the fields of underwater acoustics and solid earth geophysics, for both subsurface structure analysis and for identifying unknown local obstacles (scatterers) in the medium. The present paper concentrates on the latter application. For acoustics, the KM algorithm is extremely simple and efficient, although it usually produces a rather crude image, which is the reason for its use as the method of choice when high resolution is not needed, or as a fast technique to produce an initial guess for a more sophisticated imaging method. For elasticity, KM is much more involved, as the arrival-time algorithm is not obvious, mainly since there is more than one wave speed at each spatial point. In this paper, a new KM scheme is proposed for obstacle identification in an isotropic piecewise-homogeneous elastic medium. The scheme is based on measuring two quantities that are second-order operators of the displacement field, which are related to P and S waves, and applying the acoustic KM algorithm to each of them, with the appropriate wave speed. It is demonstrated numerically that the operator related to S waves results in very good identification in many cases. The fact that measurements based on the S-related operator are preferred over those based on the P-related operator is an empirical observation, and awaits full analysis, although a partial explanation is given here.

Funder

Peter Munk Research Institute (PMRI) fund

Lawrence and Marie Feldman Chair in Engineering Fund

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3