Deep unfolding as iterative regularization for imaging inverse problems

Author:

Cui Zhuo-XuORCID,Zhu Qingyong,Cheng Jing,Zhang BoORCID,Liang DongORCID

Abstract

Abstract Deep unfolding methods have gained significant popularity in the field of inverse problems as they have driven the design of deep neural networks (DNNs) using iterative algorithms. In contrast to general DNNs, unfolding methods offer improved interpretability and performance. However, their theoretical stability or regularity in solving inverse problems remains subject to certain limitations. To address this, we reevaluate unfolded DNNs and observe that their algorithmically-driven cascading structure exhibits a closer resemblance to iterative regularization. Recognizing this, we propose a modified training approach and configure termination criteria for unfolded DNNs, thereby establishing the unfolding method as an iterative regularization technique. Specifically, our method involves the joint learning of a convex penalty function using an input-convex neural network to quantify distance to a real data manifold. Then, we train a DNN unfolded from the proximal gradient descent algorithm, incorporating this learned penalty. Additionally, we introduce a new termination criterion for the unfolded DNN. Under the assumption that the real data manifold intersects the solutions of the inverse problem with a unique real solution, even when measurements contain perturbations, we provide a theoretical proof of the stable convergence of the unfolded DNN to this solution. Furthermore, we demonstrate with an example of magnetic resonance imaging reconstruction that the proposed method outperforms original unfolding methods and traditional regularization methods in terms of reconstruction quality, stability, and convergence speed.

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3