Abstract
Abstract
This paper investigates inverse source problems for the Helmholtz and Navier equations in multi-layered media, considering both two and three-dimensional cases respectively. The study reveals a consistent increase in stability for each scenario, characterized by two main terms: a Hölder-type term associated with data discrepancy, and a logarithmic-type term that diminishes as more frequencies are considered. In the two-dimensional case, measurements on interfaces and far-field data are essential. By employing the fundamental solution in free-space as the test function and utilizing the asymptotic behavior of the solution and continuation principle, stability results are obtained. In the three-dimensional case, measurements on interfaces and artificial boundaries are taken, and the stability result can be derived by applying the arguments for inverse source problems in homogeneous media.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China