Enhanced beam shifts mediated by bound states in continuum

Author:

Sinha Biswas Sounak,Remesh Ghanasyam,Achanta Venu GopalORCID,Banerjee AyanORCID,Ghosh Nirmalya,Dutta Gupta SubhasishORCID

Abstract

Abstract The interaction of light beams with resonant structures has led to the development of various optical platforms for sensing, particle manipulation, and strong light–matter interaction. In the current study, we investigate the manifestations of the bound states in continuum (BIC) on the in plane and out of plane shifts (referred to as Goos–Hänchen (GH) and Imbert–Fedorov (IF) shifts, respectively) of a finite beam with specific polarization incident at an arbitrary angle. Based on the angular spectrum decomposition, we develop a generic formalism for understanding the interaction of the finite beam with an arbitrary stratified medium with isotropic and homogeneous components. It is applied to the case of a Gaussian beam with p and circularly polarized light incident on a symmetric structure containing two polar dielectric layers separated by a spacer layer. For p-polarized plane wave incidence one of the coupled Berreman modes of the structure was recently shown to evolve to the bound state with infinite localization and diverging quality factor coexisting with the other mode with large radiation leakage (Remesh et al 2021 Opt. Commun. 498 127223). A small deviation from the ideal BIC resonance still offers resonances with very high quality factors and these are exploited in this study to report giant GH shifts. A notable enhancement in the IF shift for circularly polarized light is also shown. Moreover, the reflected beam is shown to undergo distortion leading to a satellite spot. The origin of such a splitting of the reflected beam is traced to a destructive interference due to the left and right halves of the corresponding spectra.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3