Magnetocaloric properties of shape-dependent nanostructured Gd2O3 oxide particles

Author:

Neupane Dipesh,Casey Jacob,Sultana Jolaikha,Pathak Arjun K,Karna Sunil,Pollard Shawn,Mishra Sanjay R

Abstract

Abstract Single-phase Gd2O3 nanostructures with different morphologies, such as nanoparticles, nanorods, nanospheres, and nanoplates, were synthesised. Gd2O3 1D nanorods and 2D nanoplate architectures were prepared via the hydrothermal method, while 3D hollow nanospheres were synthesised via homogeneous precipitation. The magnetic and magnetocaloric properties of Gd2O3 nanostructured particles were studied as functions of temperature and field. The material demonstrated typical paramagnetic behaviour in the measured temperature range of 3–300 K. The magnetic entropy change (−ΔS M ) was determined from the magnetic isotherms measured in the 3–38 K temperature range in the field up to 5 T. The maximum change in magnetic entropy Δ S M max value 11.2 J kg−1 K−1 for the nanoplate, 9.4 J kg−1 K−1 for the nanorod, 9.2 J kg−1 K−1 for the nanosphere, and 10.7 J kg−1 K−1 for the nanoparticle sample was observed at temperature 5 K for the magnetic field of 5 T. Owing to large Δ S M max , these Gd2O3 nanostructured particles would be considered promising materials for magnetic refrigeration at cryogenic temperatures.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3