Zinc oxide behavior in CO detection as a function of thermal treatment time

Author:

Munguía-Martín M P,Sánchez-Campos D,Mendoza-Anaya DORCID,Karthik T V K,Villaseñor-Cerón L S,Reyes-Valderrama M I,Rodríguez-Lugo VORCID

Abstract

Abstract Gas sensors are crucial for safety and well-being in various environments. Zinc oxide (ZnO) gas sensors are notable for their broad gas detection capabilities. In this study, ZnO structures were synthesized by optimized chemical precipitation method with urea, followed by a thermal treatment at 500 °C for 5, 10, 13, and 15 h. The microstructural, morphological, and CO sensing properties were examined. X-ray Diffraction analysis confirmed the hexagonal wurtzite phase. Crystallite size increased from 17.28 to 18.95 nm with longer thermal treatment times. Scanning Electron Microscopy revealed spherical and semi-spherical agglomerates with middle distribution of particle sizes ranging from 140 to 445 nm. The synthesized ZnO structures were evaluated as gas sensors for CO detection. Response time, recovery time, and sensor response were analyzed in a CO atmosphere at 100, 200, and 300 °C. The sample with thermal treatment for 13 h exhibited the lowest Tr of 2.43 s at a concentration of 166 parts per million and 300 °C. The Tr reduction correlated with a ZnO decrease particle size observed with longer thermal treatment times, highlighting the influence of particle size on sensor performance.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3