Comparison of printing techniques for the fabrication of flexible carbon nanotube-based ammonia chemiresistive gas sensors

Author:

Vasquez SahiraORCID,Costa Angeli Martina AuroraORCID,Petrelli MattiaORCID,Ahmad MukhtarORCID,Shkodra BajramshaheORCID,Salonikidou BarbaraORCID,Sporea Radu AORCID,Rivadeneyra AlmudenaORCID,Lugli PaoloORCID,Petti LuisaORCID

Abstract

Abstract Even though a plethora of printing technologies are currently available and their potential for the fabrication of low-cost and flexible sensors has been widely investigated, systematically based, and statistically sustained comparative studies are missing in the literature. In this work, we compare screen, inkjet, and dispense printing for the fabrication of carbon nanotube (CNT)-based ammonia (NH3) chemiresistive flexible gas sensors for the first time. Moreover, we report the first CNT-based gas sensor fabricated via Voltera printer. The devices were made of a thin layer of spray-coated CNTs and printed silver-based interdigitated electrodes. To draw a thoughtful comparison the same sensor layout, materials, and fabrication flow were used. The device morphological features were acquired through microscopic, atomic force microscope, and 3D images; additionally, the response to NH3 as well as the printing process characteristics for each technique was analyzed. From 300 µm nominal spacing between lines, we obtained a decrease of 25%, 13%, and 5% on the printed spacings with dispense, screen, and inkjet printing, respectively. At 100 ppm of NH3, a maximum response of 33%, 31%, and 27% with the dispense-, inkjet-, and screen-printed sensors were found, respectively. Statistical differences were observed between the mean values on the NH3 response of dispense- compared to the inkjet- and screen-printed sensors, which in effect showed the highest response in the Tukey test. This demonstrated that the fabrication technique employed can induce a different response mainly driven by the printed outcomes. Following a holistic approach that includes the sensor response, the application, the market perspective, and the process versatility, we suggest screen printing as the most suitable method for CNT-based NH3 gas sensor fabrication.

Funder

Autonomous Province of Bolzano-South Tyrol’s European Regional Development Fund (ERDF) Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3