Two-point functions of random-length random walk on high-dimensional boxes

Author:

Deng Youjin,Garoni Timothy M,Grimm Jens,Zhou Zongzheng

Abstract

Abstract We study the two-point functions of a general class of random-length random walks (RLRWs) on finite boxes in Z d with d 3 , and provide precise asymptotics for their behaviour. We show that in a finite box of side length L, the two-point function is asymptotic to the infinite-lattice two-point function when the typical walk length is o ( L 2 ) , but develops a plateau when the typical walk length is Ω ( L 2 ) . We also numerically study walk length moments and limiting distributions of the self-avoiding walk and Ising model on five-dimensional tori, and find that they agree asymptotically with the known results for the self-avoiding walk on the complete graph, both at the critical point and also for a broad class of scaling windows/pseudocritical points. Furthermore, we show that the two-point function of the finite-box RLRW, with walk length chosen via the complete graph self-avoiding walk, agrees numerically with the two-point functions of the self-avoiding walk and Ising model on five-dimensional tori. We conjecture that these observations in five dimensions should also hold in all higher dimensions.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3