Author:
Lapa Matthew F,Levin Michael
Abstract
Abstract
We show that some gapped quantum many-body systems have a ground state degeneracy that is stable to long-range (e.g. power-law) perturbations, in the sense that any ground state energy splitting induced by such perturbations is exponentially small in the system size. More specifically, we consider an Ising symmetry-breaking Hamiltonian with several exactly degenerate ground states and an energy gap, and we then perturb the system with Ising symmetric long-range interactions. For these models we prove (a) the stability of the gap, and (b) that the residual splitting of the low-energy states below the gap is exponentially small in the system size. Our proof relies on a convergent polymer expansion that is adapted to handle the long-range interactions in our model. We also discuss applications of our result to several models of physical interest, including the Kitaev p-wave wire model perturbed by power-law density–density interactions with an exponent greater than 1.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献