Author:
Corberi Federico,Cugliandolo Leticia F,Esposito Marco,Mazzarisi Onofrio,Picco Marco
Abstract
Abstract
We study the kinetics of the two-dimensional q > 4-state Potts model after a shallow quench to a temperature slightly below the critical one and above the pseudo spinodal. We use numerical methods and we focus on intermediate values of q, 4 < q ⩽ 100. We show that, initially, the system evolves as if it were quenched to the critical temperature: the configurations exhibit correlations that are indistinguishable from the ones in equilibrium at T
c(q) over longer and longer length scales as time elapses. The further decay from the metastable state occurs by nucleation of an average number k out of the q possible phases. For a given quench temperature, k is a logarithmically increasing function of the system size, bounded by q. This unusual finite size dependence is a consequence of a scaling property underlying the nucleation phenomenon for these parameters.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Universal scale laws for colors and patterns in imagery;Journal of the Optical Society of America A;2024-06-03
2. Freezing vs. equilibration dynamics in the Potts model;Journal of Statistical Mechanics: Theory and Experiment;2023-02-01