Management of extreme weather impacts on electricity grids: an international review

Author:

Hawker GraemeORCID,Bell KeithORCID,Bialek JanuszORCID,MacIver CallumORCID

Abstract

Abstract Extreme weather events, such as high winds, storms, flooding and temperature extremes, are a major cause of disruption to the supply of electricity to consumers. System operators (SOs) are responsible for ensuring stable real-time operation of large-scale power networks and will act to prevent adverse impacts of such events on consumer supply, contain the extent of supply interruptions that do occur, and restore supply to affected consumers in an efficient and timely manner. SOs will also generally be involved in some way in the long-term planning of the transmission network and generation capacity required to ensure future resilience. In this paper we review some of the strategies adopted by SOs across the globe in ensuring high levels of reliability and resilience to extreme weather, with reference to learning generated from specific recent events. In the face of the potential for both the frequency of such events and for their consequent impacts to increase in the future, we recommend that regulatory control of investment in networks is informed by quantified understanding of the climate-energy interface, including assessment of the potential frequency and impacts of future weather events and shared learning from events experienced by different operators. The statutory role of utilities should include robust assessment of future weather-related risks and appropriate investment in their asset resilience, as well as assisting in the preparedness of supporting agencies to mitigate the impacts of weather-related disturbances on energy consumers.

Funder

UK Energy Research Centre

Publisher

IOP Publishing

Reference57 articles.

1. 2020 ISP appendix 8. Resilience and climate change;AEMO,2020

2. Storm Arwen power cuts: 30,000 still waiting to be reconnected;BBC News,2021

3. CIGRE working group C1.17: planning to manage power interruption events;Bell,2010

4. Delivering a highly distributed electricity system: technical, regulatory and policy challenges;Bell;Energy Policy,2018

5. Reliability Evaluation of Power Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3