Improving future travel demand projections: a pathway with an open science interdisciplinary approach

Author:

Yeh SoniaORCID,Gil JorgeORCID,Kyle PageORCID,Kishimoto PaulORCID,Cazzola Pierpaolo,Craglia MatteoORCID,Edelenbosch Oreane,Fragkos PanagiotisORCID,Fulton Lew,Liao YuanORCID,Martinez Luis,McCollum David LORCID,Miller JoshuaORCID,Pereira Rafael H MORCID,Teter Jacob

Abstract

Abstract Transport accounts for 24% of global CO2 emissions from fossil fuels. Governments face challenges in developing feasible and equitable mitigation strategies to reduce energy consumption and manage the transition to low-carbon transport systems. To meet the local and global transport emission reduction targets, policymakers need more realistic/sophisticated future projections of transport demand to better understand the speed and depth of the actions required to mitigate greenhouse gas emissions. In this paper, we argue that the lack of access to high-quality data on the current and historical travel demand and interdisciplinary research hinders transport planning and sustainable transitions toward low-carbon transport futures. We call for a greater interdisciplinary collaboration agenda across open data, data science, behaviour modelling, and policy analysis. These advancemets can reduce some of the major uncertainties and contribute to evidence-based solutions toward improving the sustainability performance of future transport systems. The paper also points to some needed efforts and directions to provide robust insights to policymakers. We provide examples of how these efforts could benefit from the International Transport Energy Modeling Open Data project and open science interdisciplinary collaborations.

Funder

European research programme

Swedish Foundation for Strategic Environmental Research

Svenska Forskningsrådet Formas

Publisher

IOP Publishing

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference77 articles.

1. Asian Transport Outlook Database | ADB Data Library | Asian Development Bank,2022

2. The scales of human mobility;Alessandretti;Nature,2020

3. Law of human travel uncovered;Alessandretti;Nature,2021

4. Synthesising digital twin travellers: individual travel demand from aggregated mobile phone data;Anda;Transp. Res. C,2021

5. The turing way: a handbook for reproducible data science;Arnold,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3