Improvement of decadal predictions of monthly extreme Mei-yu rainfall via a causality guided approach

Author:

Ng Kelvin SORCID,Leckebusch Gregor CORCID,Hodges Kevin IORCID

Abstract

Abstract While the improved performance of climate prediction systems has allowed better predictions of the East Asian Summer Monsoon rainfall to be made, the ability to predict extreme Mei-yu rainfall (MYR) remains a challenge. Given that large scale climate modes (LSCMs) tend to be better predicted by climate prediction systems than local extremes, one useful approach is to employ causality-guided statistical models (CGSMs), which link known LSCMs to improve MYR prediction. However, previous work suggests that CGSMs trained with data from 1979–2018 might struggle to model MYR in the pre-1978 period. One hypothesis is that this is due to potential changes in causal processes, which modulate MYR in different phases of the multidecadal variability, such as the Pacific decadal oscillation (PDO). In this study, we explore this hypothesis by constructing CGSMs for different PDO phases, which reflect the different phases of specific causal process, and examine the difference in quality as well as with respect to difference drivers and thus causal links between CGSMs of different PDO phases as well as the non-PDO phase specific CGSMs. Our results show that the set of predictors of CGSMs is PDO phase specific. Furthermore, the performance of PDO phase specific CGSMs are better than the non-PDO phase specific CGSMs. To demonstrate the added value of CGSMs, the PDO phase specific versions are applied to the latest UK Met Office decadal prediction system, DePreSys4, and it is shown that the root-mean squared errors of MYR prediction based on PDO phase specific CGSMs is consistently smaller than the MYR predicted based on the direct DePreSys4 extreme rainfall simulations. We conclude that the use of a causality approach improves the prediction of extreme precipitation based solely on known LSCMs because of the change in the main drivers of extreme rainfall during different PDO-phases.

Funder

UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3