Manipulating spin-polarization of Co-doped ZnFe2O4 for photocatalytic TC degradation

Author:

Xie Qijing,Huang Huimin,Zhang Chengliang,Zheng Xiangyang,Shi HaifengORCID

Abstract

Abstract The rapid recombination of photogenerated electrons and holes was an enormous hindrance constraining the photocatalytic efficiency of photocatalysis, which could be effectively solved by inducing electron spin-polarization. Herein, a series of gradient ZnFe2-x Co x O4 (ZFCO-x) magnetic compounds with spin-polarization properties were synthesized by doping Co cation into ZnFe2O4, as well as the diffraction of x-rays characterization confirmed the successful synthesis of the samples. In photodegradation experiments, ZFCO-0.8 manifested improved photocatalytic degradation efficiency in TC removal experiments with visible-light exposure and external magnetic field. Furthermore, the photodegradation experiments exhibited that the degradation efficiency of ZFCO-x could be raised through Co doping and the photocatalytic degradation efficiency was significantly improved under an external magnetic field. The sample exhibiting the most prominent enhancement was ZFCO-x with doping content of x = 0.8, which displayed 48% photocatalytic degradation performance enhancement with a magnetic field. Density functional theory was used to calculate the density of states (DOS) of materials. The calculated DOS indicated that ZFCO-0.8 exhibited the most intense spin-polarization consistent with the results of the experiment. This work is anticipated to deliver an operating method for manipulating spin-polarization in photocatalytic semiconductors to improve photocatalytic degradation efficiency.

Funder

National Laboratory of Solid State Microstructures, Nanjing University

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3