Enhancing n-type doping in diamond by strain engineering

Author:

Cheng Chunmin,Sun XiangORCID,Shen Wei,Wang Qijun,Li LijieORCID,Dong Fang,Liang Kang,Wu GaiORCID

Abstract

Abstract The utilization of diamond, the ultimate semiconductor, in electronic devices is challenging due to the difficulty of n-type doping. Phosphorus (P)-doped diamond, the most prevalent type of n-type diamond, is still limited by the low solubility of P dopant and undesirable compensating defects such as vacancy defects and hydrogen incorporation. In order to overcome this limitation, strain engineering is introduced to the n-type P-doped diamond theoretically in this work. Uniaxial, equibiaxial, and hydrostatic triaxial strains are applied to the P-doped diamond. The formation energy, charge transition level, defect binding energy and other physical properties of the P-doped diamond are then calculated based on first-principles calculations. The results show that uniaxial, equibiaxial, and hydrostatic triaxial tensile strain can reduce the formation energy and the donor ionization energy of P dopant, and also reduce the binding energy of phosphorus–vacancy (PV) and phosphorus–hydrogen (PH) defects. Our results indicate that under tensile strain, the solubility of the P dopant and the n-type conductivity of the P-doped diamond can be increased, and the formation of compensating defects can be suppressed. Therefore, strain engineering is anticipated to be used to enhance the n-type characteristics of the P-doped diamond, facilitating its application in electronic devices.

Funder

China Scholarship Council

Supercomputing Center of Wuhan University

National Natural Science Foundation of China

Knowledge Innovation Program of Wuhan-Shuguang

Fundamental Research Funds for the Central Universities

Hubei Natural Science Foundation

Open Fund of Hubei Key Laboratory of Electronic Manufacturing

Wuhan University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3