Abstract
Abstract
The investigation of optical methods for generating pure spin current at the molecular level is of critical importance. We investigated the spin-related photocurrent produced by the photogalvanic effect in a binuclear ferric phthalocyanine (Fe2Pc2) junction with spatial inversion symmetry. When the magnetic moment directions of Fe atoms at the center of each phthalocyanine are in parallel configuration (PC) or antiparallel configuration (APC), the molecular junction exhibits different photoresponses. In contrast to the PC, which lacks both charge and spin current, the APC produces pure spin current. Additionally, the pure spin current exhibits robustness with respect to polarization type and polarization angle. This difference in characteristics between the PC and APC stems from the different symmetry of their spin densities, which can be altered by the direction of the magnetic moments of two Fe atoms at the center of the molecule.
Funder
Foundation of Heilongjiang Province Natural Science, China
Innovative Program of Harbin Normal University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献