Thermally induced fluctuations of spin accumulation in lateral spin-valve structures and impact on noise

Author:

Strelkov NikitaORCID,Vedyaev Anatoly,Ryzhanova Natalia,Dieny BernardORCID

Abstract

Abstract Gradient of spin accumulation in spintronic devices such as lateral spin-valves allows to generate pure spin-current without charge-current. Spin accumulation is an out-of-equilibrium magnetization in which thermal fluctuations can occur. These fluctuations may constitute a source of noise in lateral spin-valve structures. In this study, the thermally induced fluctuations of the vector of spin-accumulation were investigated theoretically in diffusive regime. It is shown that paramagnetic resonance may arise in the spin-current carrying channel due to electron-electron interactions and exchange splitting induced by the spin-accumulation. This leads to an effect that was not previously considered: resonant increase of the magnetic susceptibility of the paramagnetic channel material and an associated decrease in signal-to-noise ratio around the resonance frequency. Frequency dependence of the magnetic susceptibility and signal-to-noise ratio were calculated analytically in the case of a specific T-shaped lateral spin-valve structures. It was shown however that this noise caused by thermally induced fluctuations in spin-accumulation is generally negligible in comparison to other sources of noise present in lateral spin-valves such as Johnson noise or thermal fluctuations of magnetization in the magnetic electrodes.

Funder

ERC

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3