Review on chemical mechanical polishing for atomic surfaces using advanced rare earth abrasives

Author:

Chen XiangyanORCID,Zhang ZhenyuORCID,Zhao Feng,Luo Hao,Wang Jianmei,Meng Fanning,Zhou Hongxiu,Zhuang Xuye,Li Guo

Abstract

Abstract During the past decades, high-performance devices and setups have been widely used in the fields of precision optics, semiconductors, microelectronics, biomedicine, optoelectronics and aerospace. It is a challenge to achieve ultralow surface roughness free of damages. Due to the unique physicochemical properties of rare earths, ceria has garnered great progresses for atomic surfaces induced by chemical mechanical polishing. Compared with conventional mechanical removal by alumina and silica, rare earth abrasives achieve selective material removal on surface via their special chemical activity, without introducing microscopic scratches and defects. Nevertheless, polishing performance of rare earth abrasives depends on series of factors, e.g. size of abrasive particles, microscale topological structure, configuration of chemical slurry, auxiliary energy fields etc. As a result, it is significant to conduct a comprehensive review to understand state-of-the-art polishing technologies. This review summarizes the effect of polishing slurries composed of different rare earth abrasives on polishing performance under different conditions. Additionally, various energy-assisted polishing strategies are discussed using diverse kinds of rare earth abrasives for distinct polishing forms. Finally, future directions of polishing on rare earth abrasives are addressed.

Funder

Changjiang Scholars Program of Chinese Ministry of Education

National Natural Science Foundation of China

Key R&D Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3