Potential of electrolyte-gated transistors for anionic molecule detection: proof of concept using dye solution

Author:

Ozório Maíza SORCID,Rubira Rafael J GORCID,Vieira Douglas HORCID,Martin Cibely SORCID,Constantino Carlos J LORCID

Abstract

Abstract The use of electrolyte-gated transistors (EGTs) as sensors can be an advantageous alternative for the detection of anionic molecules due to their capability to detect various ions in solution. In this study, we explore the potential of EGTs as analytical tools for detecting anionic molecules, utilizing a copper phthalocyanine-3,4′,4″,4‴-tetrasulfonic acid tetrasodium salt (CuTsPc) solution as a proof of concept. The results demonstrate the EGT’s capacity in detecting CuTsPc in an aqueous solution, which molecule dissociates into sodium ions (Na+) and CuPc(SO3 )4 ions, leading to high ionic conductivity and the formation of electrical double layers (EDLs). Varying the concentration of the molecule induced alterations in the EDLs, exhibiting good linearity and sensitivity in the transconductance, and a detection limit of 6.0 × 10−8 mol l−1. Transistors employing the CuTsPc solution as electrolyte operated at low voltages and performed better than water-gated transistors (W-GTs). The transconductance (gm ) value for EGTs using CuTsPc solution reached 1.93 mS, while for W-GTs it was around 0.10 mS. Thus, the CuTsPc solution not only serves as a target-molecule in sensor measurements, but also demonstrates potential as an electrolyte in EGTs, thereby assuming a dual role within the device. The main advantage of the EGTs as an analytical tool is their use as a multiparameter device that enables the detection of the analytes using different phenomena that occur at the EDLs interface and which, consequently, changes the device’s performance.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Instituto Nacional de Eletrônica Orgânica

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3