2D materials and heterostructures for photocatalytic water-splitting: a theoretical perspective

Author:

Wang GuangzhaoORCID,Chang Junli,Tang Wenyi,Xie Wenjie,Ang Yee SinORCID

Abstract

Abstract Photocatalytic water-splitting for hydrogen generation by sunlight provides a new route to address energy and environmental problems. In recent years, tremendous efforts have been devoted to designing highly efficient water-splitting photocatalysts (PCs). Adequate light absorption, effective photogenerated carrier separation, and sufficiently large overpotentials for water redox are crucial in achieving high solar-to-hydrogen (STH) efficiency. These parameters thus strongly influence the design of novel photocatalytic materials. Two-dimensional (2D) PCs have flourished because of their large specific surface area ratio, short carrier migration distance compared to bulk PCs, enormous design flexibility via van der Waals heterostructure (HS) engineering and many other unique capabilities that meet the criteria for high-efficiency STH conversion. In this review, we summarize the recent developments of 2D materials and HSs for water-splitting applications from a theoretical perspective. Specifically, we first discuss a number of 2D materials and HSs employed for water-splitting. We review various strategies of material design to modulate and enhance the photocatalytic performance via improving light harvesting and carrier separation, such as the introduction of defects and dopants, and the application of strain, external electric field, rotation angles and ferroelectric switching. We then discuss the methods to evaluate hydrogen evolution reaction, oxygen evolution reaction and STH efficiency. Finally, the opportunities and challenges of designing 2D materials and HSs for water-splitting are presented.

Funder

Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3