An efficient magnetothermal actuation setup for fast heating/cooling cycles or long-term induction heating of different magnetic nanoparticle classes

Author:

Kuckla Daniel Alexander,Brand Julia-Sarita,Czech Bastian,Asharion Amirarsalan,Jüttner Jan Vinzenz,Novoselova Iuliia Pavlovna,Neusch Andreas,Hagemann Philipp,Getzlaff Mathias,Monzel CorneliaORCID

Abstract

Abstract Alternating magnetic fields (AMFs) in the ∼100 kHz frequency regime cause magnetic nanoparticles (MNPs) to dissipate heat to their nanoscale environment. This mechanism is beneficial for a variety of applications in biomedicine and nanotechnology, such as localized heating of cancer tissue, actuation of drug release, or inducing conformational changes of molecules. However, engineering electromagnetic resonant circuits which generate fields to efficiently heat MNPs over long time scales, remains a challenge. In addition, many applications require fast heating/cooling cycles over ΔT= 5 °C–10 °C to switch the sample between different states. Here, we present a home-built magnetothermal actuation setup maximized in its efficiency to deliver stable AMFs as well as to enable fast heating/cooling cycles of MNP samples. The setup satisfies various demands, such as an elaborate cooling system to control heating of the circuit components as well as of the sample due to inductive losses. Fast cycles of remote sample heating/cooling (up to ±15 °C min−1) as well as long-term induction heating were monitored via contact-free thermal image recording at sub-mm resolution. Next to characterizing the improved hyperthermia setup, we demonstrate its applicability to heat different types of MNPs: ‘nanoflower’-shaped multicore iron oxide nanoparticles, core shell magnetite MNPs, as well as magnetosomes from magnetotactic bacteria (Magnetospirillum gryphiswaldense). MNPs are directly compared in their structure, surface charge, magnetic properties as well as heating response. Our work provides practical guidelines for AMF engineering and the monitoring of MNP heating for biomedical or nano-/biotechnological applications.

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Fonds der Chemischen Industrie

State of North Rhine–Westphalia

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3