Abstract
Abstract
An enhanced quantum yield observed in silicon ionizing radiation detectors, neutron-irradiated to extremely high fluences, could be attributed to impact ionization via deep levels. The quantum yield was investigated by the intrinsic photoconductivity optical spectroscopy in silicon irradiated by neutrons to a wide range of fluences up to 1 × 1017 neutron cm−2. An increase of quantum yield was observed in highly irradiated samples. We have demonstrated that the quantum yield enhancement could be attributed to the impact ionization via deep levels, this process being presumably related to disordered defect clusters regions in Si. The proposed mechanism explains the observed decrease of the impact ionization energy by at least an order of magnitude at low temperature. The impact ionization energy values of up to 0.30–0.36 eV and less, and 0.38–0.40 eV were determined at T ∼ 21–33 K and at T = 195 K, respectively.
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献