Charge transport and dielectric characteristics of Sm x Bi1−x FeO3 thin films from the perspective of grain and grain boundary properties

Author:

Minussi F BORCID,Borges F V A,Araújo E B

Abstract

Abstract Samarium-substituted bismuth ferrite (Sm x Bi1−x FeO3) compositions comprise a system of important materials due to their combination of multiferroic properties. Several dielectric and charge transport reports in literature can be found in this system. However, as a typical polycrystalline electroceramic, their grains and grain boundaries (GBs) are expected to possess very different properties. To this date, these distinctions have not been determined for this system. In this work, through measurements via impedance spectroscopy on Sm x Bi1−x FeO3 thin films, we show that using a brick layer model allows the separation of the electrical properties of grains and GBs. Results indicate that grains have dielectric permittivity and electrical conductivity much higher than GBs. Their properties mostly control the characteristics observed in the studied thin films. The introduction of samarium reduces the electrical conductivity and increases the activation energies for charge transport in grains and GBs. In turn, dielectric permittivity is reduced in grains and subtly increased in GBs.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3