Fabrication and bonding of In bumps on Micro-LED with 8 μm pixel pitch

Author:

Jiang Bing-XinORCID,Chen Hui,Zhang Wen-Jing,Lan Jin-Hua,Yang Tian-Xi,Lin Chang,Huang Zhong-Hang,Zhang Kai-Xin,Zhu Xue-Qi,He Jun,Yang Yi-Fan,Zhang Yong-Ai,Yan QunORCID,Sun JieORCID

Abstract

Abstract Indium (In) is currently used to fabricate metal bumps on micro-light-emitting diode (Micro-LED) chips due to its excellent physical properties. However, as Micro-LED pixel size and pitch decrease, achieving high-quality In bumps on densely packed Micro-LED chips often presents more challenges. This paper describes the process of fabricating In bumps on micro-LEDs using thermal evaporation, highlighting an issue where In tends to grow laterally within the photoresist pattern, ultimately blocking the pattern and resulting in undersized and poorly dense In bumps on the Micro-LED chip. To address this issue, we conducted numerous experiments to study the height variation of In bumps within a range of photoresist aperture sizes (3 μm −7 μm) under two different resist thickness conditions (3.8 μm and 4.8 μm). The results showed that the resist thickness had a certain effect on the height of In bumps on the Micro-LED chip electrodes. Moreover, we found that, with the photoresist pattern size increasing under constant resist thickness conditions, the height and quality of the bumps significantly improved. Based on this finding, we rationalized the adjustment of the photoresist pattern size within a limited emission platform range to compensate for the height difference of In bumps caused by different resist thicknesses between the cathode and anode regions. Consequently, well-shaped and dense In bumps with a maximum height of up to 4.4 μm were fabricated on 8 μm pitch Micro-LED chips. Afterwards, we bonded the Micro-LED chip with indium bumps to the CMOS chip, and we found that we could successfully control the CMOS chip to drive the Micro-LED chip to display specific characters through the Flexible Printed Circuit (FPC). This work is of significant importance for the fabrication of In bumps on Micro-LED chips with pitches below 10 μm and subsequent bonding processes.

Funder

National Key Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3